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given in equation (9). While this should offer a reason- 
able first approximation for the included TDS cor- 
rection (but not the intensity distribution), its accuracy 
for weaker reflections and normal scans is open to 
serious question when there are appreciable differences 
between neighboring structure factors (such as in 
NaC1, for example) because of the uncertainty in any 
large negative contributions from 'other'  reciprocal 
lattice points. An extension to non-cubic materials 
should also be possible using the relations derived by 
Rouse & Cooper (1969), but the results should be con- 
siderably more complicated. Finally, our study was 
also limited to one-phonon scattering. Calculations 
based on simple models (Paskin, 1959; Borie, 1961) 
show that the neglected n-phonon TDS varies as 
(2M)"/n! so our calculated intensity distribution can 
give a good estimate of the total TDS only if 2M is 
small. The two-phonon and higher order TDS distri- 
butions appear to peak much less sharply than does 
the one-phonon TDS, so their contribution to an in- 
cluded TDS correction should be much smaller, but 
there has not yet been any specific calculation of these 
quantities. Thus, if the one-phonon included TDS cor- 
rection is large, the neglect of the higher-order terms 
must be recognized to be a possible significant source 
of  error. 
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The magnetic structure of the tetragonal nickel chromite spinel (a0--5-76; c= 8.50 A) has been solved 
by representation analysis in space group I41/amd. Magnetic reflexions decompose into two sets; (a) 
ferrimagnetic ones, produced by a N6el mode along the x-axis and belonging to the two-dimensional 
F59 representation of wave vector k=  [000]; (b) antiferromagnetic reflexions produced by non-colinear 
anticentered y and z modes belonging to a two-dimensional representation of wave vector k=[001]. 
The Shubnikov groups of the ferri- and antiferromagnetic modes considered separately are Imm'a" and 
Ip2'2"2~ respectively. Their intersection has the very low symmetry P2;. The antiferromagnetic mode 
of Ni (in 000 and 0½¼) has only y components (Sy= 0.58). The chromium spins decompose into two 
sets: Cr~ (in 0k~- and ½¼~) has y and z components (Sy= + 0-73 for the former and -0.73 for the latter 

= 40-80 has only z components (S: = 0.86). The total spins are (Ni) = 1.0 atom, Sz -0.45): Crn (in ¼½~z and-t a 
and (Cr) = 1.11, and the moment values are p(Ni) = 2.0 pB: p(Cr)= 2"22PB. The figures are computed 
from neutron diffraction data given by Prince in 1961. An equivalent model (magnetic twin) has 
ferrimagnetism along Oy and antiferromagnetic x and z modes. Magnetic interactions are highly 
anisotropic. 

Introduct ion  

NiCr204 is a normal cubic spinel (Fd3m-O~, above 
TI=310°K and becomes tetragonal below 7"1 (De- 
lorme, 1955; Lotgering, 1956) with a0=5"76, c0=8"50 

A. It is generally admitted that the space group of the 
tetragonal phase is I4~/amd-D] 9 (Prince, 1961) with 

, , , ~0~  4Ni in 4(a)" 000 (1)" 0~¼ (2)" _u_,222 (3)" 1 z (4) 
8Cr in 8(d)" 0¼-~ (1); ~-2s'1 ~ (2); ~2-7481J ! (3); J-O -3-4 s (4) 
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plus those noted (5), (6), (7) and (8), resulting from 
the translation t = ~  from the preceeding ones. 16 
oxygen atoms are in 16 (h) with parameters x = 0 ,  
y=0.239,  z=0.392. A neutron diffraction study at 
77, and 4.2°K by Prince (1961) revealed at the 
lower temperature a considerable increase of the cubic 
111 or tetragonal 101 line which corresponds to classical 
N6el ferrimagnetism, but in addition new lines with 
the (tetragonal) indices 100, 111 and 201 appear. No 
satisfactory structure model was found however 
(Prince, 1961). We thought that representation anal- 
ysis of possible magnetic modes as described by one 
of the authors (Bertaut, 1968, 1970) should show its 
usefulness here. The idea of the method is that the 
number of possible magnetic modes in a given symme- 
try is limited. These symmetry-compatible modes are 
the building stones for the magnetic structure models. 
The observed intensities are compared with the calcu- 
lated model intensities. As in crystallography, one 
starts with the highest possible symmetry. [Only if no 
fit is obtained in a given symmetry, one proceeds by a 
systematic symmetry descent until a satisfactory agree- 
ment is obtained. See, for example, (Fruchart, Bertaut, 
Sayetat, Nasr Eddine, Fruchart & S6nateur, 1970).] 
Our discussion closely follows Bertaut (1970). The 
wave-vectors k, characteristic for the magnetic trans- 
lation groups, are taken from the diffraction experi- 
ment (8 2) and the irreducible group representations 
are derived for them (8 3). As an example, the permu- 
tation representations induced by point transforma- 
tions on the crystallographic sites 4(a) and 8(d) are 
completely reduced (8 4). With this information, the 
irreducible representations to which the magnetic 
modes belong are simply determined in § 5 and the 
basis vectors depicting the magnetic modes are found 
by the projection operator technique (8 6). The general 
form of magnetic intensities is expressed and compared 
to experimental data in § 7. Two equivalent models 
(twins) are constructed and found to be in good agree- 
ment with observation (§ 8). Finally the Shubnikov 
symmetry (§ 9) and magnetic interactions are briefly 
discussed (8 10). 

2. Wave v e c t o r s  

Magnetic translation lattices are intimately connected 
with the concept of wave vectors k. If t is a crystallo- 
graphic lattice translation, exp (2nik.  t )=  + 1 means 
that it is also a magnetic lattice translation while 
exp (2nik .  t ) = -  1 means that t is a magnetic anti- 
translation. As in ordinary crystallography, the magne- 
tic translation lattices and the corresponding wave vec- 
tors are found from extinction rules (Bertaut, 1970). In 
the present case we have to do with two invariant 
wave vectors, namely k l = 0  and k2=[001], ki corre- 
sponds to the ferrimagnetic mode for which the indices 
hkl of non-zero reflexions are such that h + k + l=  2n. 
Thus the lattice I is conserved, i.e. exp 2nikl. t = 1 for 
t = ~ .  k2=[001] corresponds to the above mentioned 
new lines for which obviously h + k + l=  2n + 1. One 

has exp (2rcik. t ) = -  1 for k = k 2  and t=~-} .  The 
corresponding anticentred magnetic lattice is noted 
lp by Opechowski & Guccione (1965) and P~ by Belov, 
Neronova & Smirnova (1965). 

There are two possibilities to be investigated. The 
magnetic structure may be the superposition of a ferri- 
magnetic mode and an antiferromagnetic mode (in 
which the Ni and Cr sublattices are separately anti- 
ferromagnetic). Then, for a given spin, the components 
belonging to different representations, i.e. to the ferri- 
magnetic and to the antiferromagnetic mode must be 
orthogonal. 

The other possibility is that two magnetic phases are 
present, a ferrimagnetic and an antiferromagnetic one. 

3 .  I r r e d u c i b l e  r e p r e s e n t a t i o n s  

We use the elegant method devised by Olbrychski 
(1963) considering only relations between generators. 
(c~lz~) is a space group operation where ~ is a rotation 
(proper or improper) and z~ is the associated transla- 
tion, fractional for screw axes and glide planes and 
equal to a lattice translation for the other symmetry 
elements. We choose the following generators: a 
fourfold screw axis 41 in 11 ~ z ,  a twofold rotation axis 
2x in x¼-~-, an inversion centre I in 0¼} and the trans- 
lation --22z.~-!~ The group operations can be written 

41=(4z10;2~=(2~10; I=(TIO;  t = ( l l t ) .  (3-1) 

Here z = 0½¼; 4z, 2x, T and 1 are the 3 x 3 matrices 

[°1il 4 z =  - 1 0 ; 

0 0 

1 =  0 - 1  ; 
0 0 -  

X = - 1  
O -  

1 = 1 . ( 3 - 2 )  
0 

Remark-According to the International Tables for 
X-ray Crystallography (1969) 4, is here a clockwise 
screw axis which sends point xyz to y, ½ - x ,  z + ¼. This 
explains why the matrix 4, above has not the conven- 
tional form (which corresponds to an anticlockwise 
rotation). 

Using the well known relation (c~[z~)(fllr~)= 
(~fl[~ra+v,), the following relations between genera- 
tors are found: 

(41)4=(11001); 12-=-(11001); (2x)2=(11000) 
(412x) 2 = (2x41) 2 = (1 I000); 2xI= I2x 
41I = (1 ] ~ z--~z)I41. (3-3) 

In these relations the translational parts are 000, 001 
and x 1 2½~. Their matrix representative is the unit matrix 
for the wave vector k1=[000]. For the wave vector 
k,=[O01] the matrix representative is still +1  for the 
translations 000 and 001 but 1 for 11 , - e~-½. Denoting 
the matrix representative of (. I.) by D(. I.), one has 
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D((41) 4) = D(I 2) = D( (20 2 ) = D((412~) 2) = D((2x4,) 2) = 1 

D(12~) = D(2~I) (3-4) 

as well for k~ as for k2. 
Only the last relation of  (3-3) gives rise to a signi- 

ficant difference. One has indeed 

D(41. I ) =  D( I .  41) for k, (3-5) 

but 
D(4~. I ) =  - D O . 41) for k2. (3-6) 

The non-commutat ion  of  41 and I in (3-6) implies that  
for k2=[001] there cannot  be any one-dimensional 
irreducible representation. It is also obvious that  for 
kl = [000] the irreducible representations are the same 
as those well known for the point group Dan = 4/mmm 
we reproduce for convenience in Table 1. 

Remark - The operat ion 412xi corresponds to the 
glide plane d in the group symbol I41/amd. One finds 
(412xI) 2 = (1 [~zt½) and for k 2 = [001] one has D((412xI) 2) = 
- 1 .  This last relation is however not independent.  
One has indeed" 

(412~I) 2 = 412~I412xI = 4112~412~I 
= - I412x412~I = - l(4x2x)2I = - 12 = - 1 . 

(3-7) 

By Olbrychski 's  identification procedure, (cf. Bertaut, 
1968) we find matrices for the generators and end up 
with the four non-equivalent irreducible representa- 
tions shown in Table 2. One checks that  there are no 
other ones from the rule g = Y d~ = 16 = 2 2 -+- 2 2 -Jr- 2 2 q- 2 2 

o 

where g is the number  of elements (translations ex- 
cluded) and do the dimension of the irreducible repre- 
sentation. These are of  two kinds; in F + and Fi- the 
matrix representatives of 41 and 2x commute;  in F + 
and Fi- they do not. 

As a first application we study the reduction of the 
permutat ion representation F p~m, induced by the sites 
4(a) (Ni) and 8(d) (Cr). The results of this reduction 
will be needed later. 

4. Permutation representations and their reduction 

4(a) positions (Ni) 
The fourfold screw axis 41 in ¼¼z sends point 1 in 000 

to point 2 in 0½¼, point 2 to point 3 in ~2zila and so on. 
This permutat ion of points can be represented by a 
matrix equation 

II i i 1 iiii//!i (41) 2 = . i = (4-1) 

i " 

Table 1. Irreducible representations of l4,/amd-D~49 for k = [000] 

1 41 4~ 43 2x 412x 422x 432x 
F1 1 1 1 1 1 1 1 1 
F2 1 1 1 1 --1 --1 --1 --1 
F3 1 --1 1 --1 1 --1 1 --1 
F4 1 - 1  1 - 1  - 1  1 -1  1 

F5 (1 .  i) ( i - i ) ( -1 . - i )  (-i i) ( i  1.)(_;. t[)(-i-'.) ( ; - f )  x, y 

Only eight operations are listed• The inversion is represented by +1 for the representations ]-'jg(j: 1, 2, 3, 4, 5) and - 1  for 
the representations Fj,,(j= 1, 2, 3, 4, 5). The translation t=-}½½ is represented by the unit matrix +1. The representation /'5 
can be made real. 

Fs,,,, (1. i ) ( - i  1 . ) ( - 1 .  _ i ) ( i - 1 . ) ( i  1 . ) (1 ._ i ) (_ i -1 . ) ( -1 .  i) 

Table 2. Irreducible representations of 141/amd for k=[001]  

1 41 4~ 43 2x 412x 432x 

r:andV,- (1. i ) ( ! - i )  (-I .- i)(- i .  i ) (  i 1.)(-i i . ) ( _ i - 1 . ) (  i-i.) 
V:andV: (1. i) (1.-i) (1. i) ( 1. i) ,(1,  i)~(1.-i)  ~( 1. i )"(1.- i )  

1 41 . 1" 4~. i 43 . i 2x~ 412x~ 422a 432x~ 

F l+andF1 - r/( i 1 . ) r / ( _  i i . ) ~ ( - i - 1 . )  r/( i - i . )  r/( 1. i ) r / (  / . - i )  r / ( - 1 . - i )  r/(-i,  i )  

F2+andF2- ( i  1 . ) ( - i  1 . ) ( i  1 . ) ( - i  1 . ) ~ ( i  1 . ) e ( _  i 1 . ) ~ ( i  1.)~(-i I) 
Here for/"1 + r/= +1; for /-'1- r/= --1 

for r 2  + e = + 1 ; for /"2- ~ = -- 1. 

A real ropresentation equivalent t° and is f°und when r°"°cing 4'= (: _i)bY 41=(_i  !) 

The translation t=k}-} is represented by t=  (-1 __ i) 
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Thus the matrices (41) and correspondingly (2x), (i), 
(t), (4-2) are the generators of a permutation represen- 
tation F p'~m which has 32 elements, corresponding to 
the following operations:e, 41, 4~, 4a; 2x, 4~2x, 422x, 
4a2~; i ,  41i, 42i, 4al; 2~i, 4~2~i, 422xl, 432~i plus the 
sixteen operations obtained by multiplying the pre- 
ceeding ones with the translation t (which sends point 
1 to 3, point 2 to 4 and vice versa). All the operations 
are understood modulo a lattice translation lla1+ 
12a2 + laa3 (11, 12, 13 integer numbers). 

=( i ) ;  (t)= ii 
(4-2) 

From the generating matrices (4-2) the 32 matrices of 
F perm may be constructed and the characters evaluated 
Non-zero characters correspond to points conserved 
in the permutation, i.e. to site symmetry elements: 

z(e) = Z(2xi) = z(t42) = z(t422~) = 4 

X ( 4 , 2 x ) = Z ( 4 1 i ) = x ( t 4 , 2 x ) = Z ( t 4 ~ D  = 2 

Z(432x) =Z(4al)=z(t4~2x)=Z (t4~l)= 2.  (4-3) 

The number of times ao an irreducible representation 
1"o is contained in F pe~m is given by 

ao= 1/g~,z t°)(T)*z(T)  
T 

and it is found that the irreducible represent~ttions 
for both vectors kt=[000] and k2=[001] are needed. 
Using Tables 1 and 2 and relations (4-3) one has 

Fp~m(Ni) = Flo(k,) + F4u(kl)  + F + ( k 2 ) .  ( 4 - 4 )  

8(d) positions (Cr) 
The atoms being numbered as in the introduction, 

the generating matrices of /"perm of dimension eight 
have the following form 

(4')= (A AO) ;(2x)= ( B O)" 
(4-5) 

y Y 

x 

~11 tt/21 
(a) (b) 

Fig. 1. Graphical representations of modes in /'2-. (a) q/'llx 
is maximal: ~,21=0. (b) ~'21 is maximal and gal=0 [cf. 
equation (6--4)]. 

Here A, B, C, D, E, O are 4 x 4 matrices 

A =  

C =  

; B =  

; D =  

i i 

il (4-6) 

E is the 4 x 4 unit matrix and O the 4 x 4 nul matrix. 
The non-zero characters are 

x(e) =8;  Z(2x)=x(i')=X(2xl)=X(422x)= 
z(t]) =z(t4~2~) = 4 (4-7) 

and the reduction of/-'perm yields 

Fperm(C0 = Flo(kl) +/-'3o(kl) -Jr- ]"sg(kl) "{" 
Vt(kO+V~'(k,). (4-8) 

According to (4-4) and (4-8) the dimensions of the 
present irreducible representations are equally distri- 
buted over the wave vectors kl and k2, i.e. over lattice 
translations and anti-translations. 

5. Representation of magnetic modes 

A space group operation T=  {elr~} acting on a magne- 
tic moment, say on an axial vector at point R may be 
decomposed into two independent and commuting 
operations. A first operation sends point R to another 
one R'  giving rise to the already discussed permutation 
representation. A second operation e rotates the axial 
vector about a fixed point. Thus the representation F 
induced by the operation of space group elements on 
magnetic moments is the direct product of the permu- 
tation representation /"perm and the representation F v 
of the x, y, z components of an axial vector, 

F =  F perm × F v . (5-1) 

The same direct product relation holds for the matrix 
representatives of a space group operation T. The 
corresponding relation for characters is simply 

z r ( r )  =Zp°rm(r)Zv(r).  (5--2) 

In uniaxial crystals F v splits into a one-dimensional 
representation F, v for the z component and a two-di- 
mensional representation FV=.y for the x , y  components. 
In the present case Fff is clearly F2g (kl) and Fe=,r is 
Fsg (kl) so that F splits already into subspace repre- 
sentations 

r = / ~ x . , + r z  (5-3) 
with 

/"z = /"perm X/-'2g(kl) ; /"x, y =/- 'perm X/"5o(kl)  . (5-"4) 

Thus we get for the z components of magnetic mo- 
ments 
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F~(Ni) = F2,, + 1 " 3 .  + F F  
rXCr) = G ,  + 1"4o+ v,o + V;- + V~- (5-5) 

and for the x,  y components  

C~, y(Ni)= 1-'5o + Fs. + Fz + +/ '2-  
r x . , ( C r ) = F , o +  1-'20+ F30+ 1-'4o+ 2/'5o+ F + + 

F F  + F+ + F i  - . (5-6) 

It can be shown that • (o) with j fixed and i =  1,2, do ~u i j  • . .  

(do=dimension of  the irreducible representation F ~)) 
transforms according to the representation F ~) or is a 
basis vector of  F ~). 

The following part of  a table illustrates in the first 
line the symmetry operations T and in the second line 
the effect, say TV in the case of  Ni with ~u=6el~ 

T: 1 . 4~ 4zt 43 2x . 4~2~ . 4~2x . 4~2x etc. 

Tg/: S~'lx. - 5~2r. - SP3~. + S~'4~. S~'2x. - S~'3~. - ~ 4 x  • Jr" ~ l y  (6--2) 

In the last relations we have used 

F +  ( k 2 )  x / ' 5 o ( k 0  = r + ( k 2 )  + G-(k2) 

F + (k2) x Fso(kx) = F~  (k~) + Fi-(k2) • (5-7) 

We are now in a position to survey the distr ibution of 
permitted magnetic modes over the different represen- 
tations. This is done in Table 3. For the kl modes it is 
seen that coupling of  the magnetic lattices of Ni and Cr 
is only possible in 1"2o and in 1"5o. One of these modes is 
expected to give rise to the observed ferrimagnetism. 
In the kz-modes coupling of Ni and Cr modes is pos- 
sible in Fi- ,  F ~  and Fi-.  

Table 3. Irreducible  representat ions  and  couplings 

Representations F(kO Positions 4(a) Positions 8(d) 

x, y z x, y z 
/ " l g  - - C r  - 
Fzg - N i  C r  C r  
F3g - - Cr - 
F 4 g  - - Cr Cr 
/'51, Ni - Cr Cr 
F3g - N i  - - 
/ ' 5 .  N i  - - - 

Representations F(k2) 
F~ + - - Cr - 
F ~ -  - N i  C r  C r  
/'2 + Ni - Cr - 
1"2- Ni - Cr Cr 

6 .  M a g n e t i c  m o d e s  

We use the so called projection operator technique: 
let V be a component  or a linear combinat ion of  com- 
ponents of  a magnetic moment  or spin. In most cases 
it is sufficient to take V = 5t'1~ with c~=x, y, z. Let T V 
be the result of  the action of  the space group element T 
on V and mult iply T~, by D~(T)*~s, element of  the 
matrix D~(T)  * representative of  T in the irreducible 
representation F (~). The asterisk indicates complex con- 
jugation. The sum over group elements T of such 
products is noted 

V}~)= ~ D(~)(T)*~Tv. ( 6 - 1 )  
T 

For the kl-modes one has St' 1 =6¢'3 and ~O 2 = ~ O  4 while 
for the k2-modes one has 5¢' 1 = -5¢'3; 6~'2= -5¢'4. 

With the help of relations (6-1) and Tables 1 and 2 
it is easy to construct the basis vectors. The only non- 
zero basis vectors belong to the representations of  
relations (5-5) and (5-6). 

Ni kl modes  
~u(2o) = (5,°1 + 50,_),; ~u ~3") = (Sex - 5e2) ~; 

11 ,,,(50) = 1fl¢~50) ; 

~ ' s " ) = (  6 f , -  5e2).+ i (  6f ' ,  6fz)y, w2, , r , ,  • 11 . . . .  ~s.) . . . .  ( s . )  ( 6 - 3 )  

Ni k2 modes  

~qdF~-) = (~G-i~e2),, ~,~ =i~q*~; 
~, . (r+)  = ( ~  + ~e~)x + ( ~ , -  ~ 2L ,  
~,,x(r+) = (~G + ~2)x-  ( ~ , -  ~2),; 

~,~(r~-) = - ( ~ 1 -  ~2)~-  (~G + ~e~),. (6--4) 

These relations can be illustrated by graphs or 'modes ' .  
As an example let us assume that a magnetic structure 
belongs to / '2 - .  This means that basis vectors belong- 
ing to other representations, say to f':+ disappear  
identically whence 6elx = - 6e2x and 5air = + 6e2r. If  we 
make 6 e ~ = -  6elf ' ~11(/-'z-) is m a x i m u m  with ~u21 = 0. 
If  we make 6~ax= +6exr, Vz~(Fi-)  is m a x i m u m  with 
~uu =0 .  Fig. 1 illustrates these findings. 

One proceeds as above for the Cr modes 

Cr kl modes  

Vt= 10) = 5Plx - 5P2y - 5e3x + 5e 4~; 
~u~20) = 5e1~ + 5 e 2 x -  5e3~ - 5e4~ , ~u~ 2°) = 

~(=30) = Selx + Se2y _ 6e3x _ Se4~ '; 

~U~40) = S e l y -  6 e 2 ~ -  6e3, , + Se4x, ~U~z 4°) = 

~ ( 5 O ) _ _ ( C _ p  ..L ~ 3 ) x . + _ i ( ~ o 2 _ + _  . ~ 4 ) y ,  V'21X W l I x ,  l l x  - -  \ V l  w .~,(5g) = jtt(Sg) • 

~¢(50) __ r W  _t_ ~ G o 3 ) y _  i(~9o2 + ~904)x,  V'21y = v x t y  , l l y  - -  k~" 1 / j , t (5g) ~t~(5g)* • 

(SO) __ 
[fill l z  - -  (~,O1 - -  ~ 3 ) z  - -  i ( ~ 2  - -  ~ 4 ) z ,  W2lz'tt('O) = Wllz't'('O)*" (6-5) 
Cr k2 modes  

~, l ,Xrc)  = (~e, + ~ 3 ) ~ -  i (se ,  + ~e)~, ~,2~= _ ~,~%; 

~ / / l l z ( / - ' l - ' )  =" ( ~ 1  - ~ 3 ) z - -  i ( ~ 2  - ~D4)z ,  ~//21z = - -  ~ / ~ l z ;  
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~ff21x(/"2 -I') : (~991- ~3)x "[- (~O2 -- '-9~4)y ; 
~,,xy(r/-) = (se~ _ se~)y + (~e~_ ~e4)~, 
~,~y(ri-)  = (~e _ ~e~)y_ (~ G _  ~e4)x; 

~¢11z(/"2-): (~°1 --[- ~°3)z--[-(~°2 + ~ 4 ) z ,  
~2iz(r~-) -- (~' i  -k- ~'°3)z -- (~9~ 2 At- ~ 4 ) z .  (6-6) 

and also 

(I{100}) 

(I{001}) 

(I{201}) 

= (I0{ 100}) + 8(Bx + B:) 

= (I0{001 } ) -  81/)(B~ + ~y) 
= (I0{201 } ) +  16]/-2(- By + B~).  

Here we have abbreviated 

(7-8) 

We have not listed the basis vectors (~¢12, ~b¢22) because 
they are (except for changes of sign) identical with the 
basis vectors (~'n, ~20. 

For practical purposes it is useful to write the rela- 
tions (6-3) to (6-6) in Table 3 on the lines to which 
they belong. 

It can be checked that the number of basis vectors is 
identical to 3n, if n is the number of equivalent points. 

7. Intensity calculations 

In straightforward notation, the magnetic structure 
factor is defined by the vector sum 

F(h)= ~ 5¢~Hj(h) exp (2nih.  r j ) .  (7-1) 

The magnetic intensity is given by 

I(h) = [F0a)l 2 -  IF(h). hl2/lhl 2 (7-2) 

7.1. Antiferromagnetic lines 
From the calculations of F(h) one sees that the 

magnetic moments of chromium only occur in the 
combinations 6¢1+~9'3, ff2-{-e~94, t.~91 -- t~a3 and ~ 2 - -  
5'°4. We have found it convenient to define vectors Sj 
and sj for the Cr moments as follows 

~ 1  = S l - ] - s l ;  ~ 2  = $2-[- s2 

6~'a = S1 - si ; 6r4 = $ 2 -  s2. (7-3) 

In a powder diagram, reflexions for which Ihl has the 
same length coincide. The averaged intensities are 
noted (l{h}). Thus (I{111 }) means the average of the 
intensities of the eight reflexions 111, Tll ,  111, llT, 
111, 111, 111, 111. The evaluation of (I{h}) is tedious, 
but straightforward. The result may be written as 
follows 

(I{h}) = (Io{h}) + Interference term. (7-4) 
Here 

(Zo{h})=(Icr{h})+(INi{h}) (7-5) 

where (Icr) and (INi) are the averaged intensities for 
the separate sublattices of Cr and Ni respectively, 
calculated according to (7-2). For completeness these 
intensities are summarized in the Appendix. One has 
for the antiferromagnetic reflexions 

(I{111 } ) =  (Io{111 }) - 8V'2-d12n A 
(I(102})  = (Io{102}) + 16d~ozA (7-6) 

with the abbreviations 

A=b~b3[(SP~ + ,.-9~2)zNiSl.vCr -- (,-~'1 - ~P2)zNiS2xcr 
+ ( ~ i  + ~2)yNis~,cr-  ( ~ i -  ~2)xNlS2,Cr] 
b=a-1; b3=c -1 (7-7) 

Ba = S laCr (~  1 -[- ~2)aNi--S21JCr(~l-- ~a2)BN i ( 7 - - 9 )  

with the following conventions: if a = x ,  fl=y; 
if a = y ,  f l=x and if a = z ,  fl=z. 

Discussion of intensities 
Some remarkable facts for the magnetic structure 

under discussion emerge here already. The interfer- 
ence term noted A(7-7) occurs with opposite sign in 
the intensities of 111 and 102 and thus is expected to 
strengthen the 111 reflexion which is observed strong and 
to weaken the 102 reflexion which is observed weak. The 
existence of a non-zero term A implies anisotropic 
exchange between the Cr and Ni atoms, for it links z 
components to x and (or) y components of moments. 
Another consequence is the impossibility of ferri- 
magnetism along Oz. Indeed ferrimagnefism along Oz 
would not be compatible with antiferromagnetism 
along the same axis, for equivalent atoms must have 
equal moments. On the other hand it is seen that if 
there is no antiferromagnetic component along Oz 
the interference term A disappears. Thus antiferro- 
magnetism along Oz in one sublattice and in the Oxy 
plane in the other sublatfice appears to be necessary. 

In the expression for the intensities 100, 001 and 
201, interference terms, labelled B and corresponding 
to isotropic interactions, appear in such a way that 
001 and 201 should become negligible. 

However a discussion of possible antiferromagnetic 
modes, guided only by the intensity expressions, 
would be rather hopeless in view of the great number 
of parameters involved. 

7"2. Ferrimagnetic lines 
From the structure factor calculations of the re- 

flexions 110, 1T0 and 002 which are not observed and 
from the above mentioned impossibility of ferrimag- 
netism along Oz, one must draw the following con- 
clusions for the ferrimagnetic components (denoted by 
the subscript f )  

~ l f N i  : ~O2.fNi ; ~OlfCr ~-- ~¢O3fCr ; ~O2fCr = °Q°4fCr ; 

~lfCr  -~ ~O2fCr , (7--10) 

i.e. an equal contribution of all the chromium moments 
to the ferrimagnefic mode. 

8. Model construction 

Ferrimagnetism in the Oxy plane can be realized in 
Fsg. 
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8"1. Ferrimagnet&m along O x  
Let us assume a ferr imagnetism along Ox,  say 

Slxj,(Ni) = Szx:(Ni); S~x:(Cr) = S3x:(Cr); 
S2x:(Cr) = S4x:(Cr) (8-1) 

which gives rise to non-zero basis vectors in Fso. 
Components  of  the same spin but belonging to 

different representations must be orthogonal.  Thus for 
the construction of  the antiferromagnetic moments  we 
are only allowed to take y and z components.  The 
representation which from the point of  view of  the 
physicist is the most probable  is the representation 
offering the greatest number  of  possible couplings. 
This is /'2-. We read then from the basis vectors in 
(6--4) and (6-6) that we shall have the following model 
to deal with 

S:~,(Ni) = ~2 , (Ni ) ;  slr(Cr) = - s3,(Cr); 

S2,(Cr) = + S4,(Cr); St,(Cr) = + Saz(Cr). (8-2) 

which gives rise to the following intensities 

( I  (111) ) = 8[t 2 + 2u 2 - d~n(bt + /2b3u)  z 
+ 2w2(1 2 2 -dl ltb3)] 

( I (102))  = 8[u z + v z + t2 -d~oz (b t -2bau)  z 

+ wZ(1 - 4d~Z02b2)] 

(I(O01) ) =  8 ( t -  /Zv)  z 

(I(100)> = 8[(t + v) z + u z + w z] 

(I(201))  = 8[t 2 + 2v z -  2d~o~bZ(t + 1/'2v)21. (8-3) 

Here we have abbreviated 

5t'lr(Ni)fNi(h ) = t; sl,(Cr)fcr(h) = v; 

Slz(Cr)fcr(h) = u; Szz(Cr)fcr(h) = w . (8-4) 

Of  course t, u, v, w in (8-3) are functions of  the diffu- 
sion vector h. The above equations (8-3) already pro- 
vide a qualitative picture of  the observed intensities. 
Indeed, if  t and u have opposite signs, I(111) will be 
strengthened and I(102) weakened. If  t and v have the 
same sign, I(001) can be made to disappear,  I(201) 
will be weakened and I(100) strengthened as is ob- 
served. 

8-2 Ferrimagnetism along Oy 

It can be easily checked that  one has in Fso 

SI,:(Ni)  = Sz,:(Ni);  S~,:(Cr) = S3,:(Cr); 

& , A C r ) =  & , A C t )  (8-5) 

and in F~- 

~9°tx(Ni) = - ~9°ax(Ni); s2x(Cr) = - s4x(Cr) 

S2z(Cr) = S4z(Cr);  S lz(Cr)  = S3z(Cr) .  (8-6)  

It is seen that in this model  the role of the chromium 
moments  1 and 3 is taken over by those of 2 and 4 and 
vice versa. The  two models as shown in Fig. 2 behave 

like twins and give rise to the same intensities. For  
completeness we show this by direct calculation. With  
the abbreviat ions 

S:lx(Ni)fNi(h) = t ' ;  s2,,(Cr)f,,(h)= - v '  

S2z(Cr)fcr(h) = - u ' ;  Sa~(Cr)fu(h)= w' (8-7) 

one finds exactly the same equations (8-3), pr imed 
letters having replaced the unpr imed ones. 

To see the twin relation between the upper and 
lower parts of  Fig. 2, rotate the upper part  around 
the fourfold screw axis marked  by a cross and change 
the signs of  all the spin components.  One obtains 
exactly the lower part of  Fig. 2. It is remarkable  that  
the z components  do not change in either model.  

5 ~ ~ - 5  ~ - ~ v  

i3 3+ 

] - - , ~  

! 

Fig. 2. Structure models. Upper part: Ferrimagnetism along 
Ox. Tetrahedralsites are marked by squares, octahedral 
sites by circles. Heights are indicated in eights of the c par- 
ameter: 0, 2, 4, 6 for the tetrahedral, 1, 3, 5, 7 for the 
octahedral sites. Thus the numbering of chromium atoms 
1, 2, 3, 4 of the text corresponds to the heights 5, 7, 1, 3 
respectively around the cross x which shows the location 
of the fourfold clock-wise crystallographic screw axis. Spin 
directions in the Oxy plane are indicated by arrows and in 
the Oz direction by + and - signs. Lower part: Ferrimag- 
netism along Oy: Same conventions as above. 
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8.3. Spin components 
We used a multiplicative scaling factor of 3.699 to 

bring the data taken by Prince (1961, Table I) at 77 
and 4.2°K to an absolute scale. From the reflexions 
112+200 and 101 we deduce the ferrimagnetic spin 
components 

S~fiNi)=0.82; S~:(Crl)=Sx:(Cr2)=0.70 (8-8) 

and from the antiferromagnetic reflexions 

~ , (Ni )  =0.58; S,(Cr0 = -0 .45;  
s , (Cr0=  +0.73; S~(Cr2)=0-86. (8-9) 

In the evaluation we have supposed that I(001) is 
strictly zero It(001) = I/-2. v(001)]; that I(111) is maxi- 
mal [ u ( l l l ) = - c / a ~ 2 t ( l l l ) ]  and that the two chro- 
mium species have the same total spin values. The 
total spins are thus ~ t o t  (Ni)= 1-0 and ~9~tot(C0 = 1.11 
and the moment values p(Ni)=2.0pa+0.2/z # and 
p(Cr) = 2.22/~a _+ 0.2/z a . 

9. Shubnikov symmetry 

It is easy to read from Fig. 2 those symmetry elements 
which leave the magnetic structure invariant. 

Consider first the ferrimagnetic component along 
Ox which is invariant under the translation t, the in- 
version I, a twofold axis 2x and antiaxes 2~ in ¼, y, 
and 2~ in ¼, ¼, z. The Shubnikov group would be 
Imm' a'. 

The antiferromagnetic component is invariant under 
an antitranslation t', under the srew axis 2~ in ¼¼z 
and under the anti-axes 2~: and 2~. The inversion 
centre is lost and the Shubnikov group would be 
Iv2'2'2~. 

The overall symmetry is the intersection of Imm'a' 
and Iv2'2'2~ so that we are left with P2~. Considering 
in the same way the case of ferrimagnetism along 
Oy we arrive at the equivalent symmetry P2~,. We doubt 
that a conventional symmetry descent through Shub- 
nikov groups would have given rise to the rather 
straightforward derivation of the magnetic structure 
as did the present representation analysis. 

10. Invariants and magnetic interactions 

One of the essential advantages of representation anal- 
ysis is the possibility of getting insight into magnetic 
interactions. Indeed from the knowledge of basis 
vectors, one constructs invariants which may enter a 
'classical spin Hamiltonian'. Such invariants are in 
the case of two-dimensional representations [Vn[2+ 
[V2d 2 for interactions between the same kind of atoms 
and (~/n) (~11)* + (V21) (v/21)* + c.c.q, for interactions 
between different species or different directions. 

Considering the interactions in the antiferromagne- 
tic F2-(k2)-modes, the ferrimagnetism being along 
Ox, one finds the following invariants and interactions: 

Ni sublattice. - S:~S~'2y, positive interaction 
through super-super exchange; 

Cr sublattice. - (a) -S:xyS:3y=SalyS:'Ty. Here we 
have replaced S/'3y by the equivalent antitranslated 
spin 6e7y with Cr(7) in 0¼] which is the nearest neigh- 
bour of Cr(1) in 0¼~. The interaction corresponds to 
positive exchange along Oy. 
(b) ~ 6 : 3 ~  + * ~ 9 2 z ~ 4 z  = - -  t~!91z~/97z  - -  t g ~ 2 z t g ~ S z .  This cor- 
responds to negative exchange along Oz. 

Remark. - In the right-angle interaction Cr a + - X -  
Cr a+, negative direct exchange interactions Cr-Cr are 
competing with positive super-exchange interactions 
through the anion X. The resulting interaction is 
negative for small Cr-Cr distances (small anion X, O 
for instance) and positive for big ones (Te for instance). 
In the present case one has for the same magnetic 
link Cr-X-Cr  a positive interaction along Oy and a 
negative interaction along Oz so that here interactions 
are strongly direction dependent. 
(c) - ( 5 f w ~ , -  5a3~,S,°3,)+(~x~,5:3~- ~ 5 : 3 y ) .  This 
invariant splits into a crystal field - or 'one ion an- 
isotropy' - invariant and an antisymmetric exchange 
(Dzialoshinski-Moriya) invariant. Both of them may 
justify the non colinear y-z  coupling. 

Ni-Cr interactions 

-- ~ l y N i ~ l y C r  isotropic negative exchange 

- ~lyNi~lzCr anisotropic exchange 

Our symmetry considerations show the possibilities of 
coupling. The next step should be a quantum mecha- 
nical treatment, evaluating the strength of possible 
couplings. 

A more complete experimental analysis using vari- 
able temperatures and applied magnetic fields is in 
progress. 

APPENDIX 
Sublattice intensities 

Cr 

(Icr{ 111 }) = 16~ {S 2 -  d~n[b2(S~ + S~) + bZS~]} 

(Icr { l O2 } ) = 8 {~(S2 + sZ) - d~o2[b2(S~y + S~2.,, + s~x + s~y) 

+4b~X(S~ + s~)]} 

(Icr{ 100}) = 8{SxZx + S~, + s~r + szZx + ~(S z + S~)} 

( Icr { 201 } ) = 16 2 { s 2 -- d ol[2b'(sl + s,  + b141 } 

(Ic~{001})= 16{ X (s~+s~)} 

~ =  summation over Ch  and Cr2. 

Ni 

(IN~ { 111 }) = 4~ { ~9°~, - d~n[b2(~9°~ + 5°~)N~ + 632 5°~1 } 

(INi{ 102}) = 4~{5'°~} -- dfo2{ZbZ[~(Sa~ + 5:~) 

+ 2(6:1,S:z r - 5:~xS:2x)] + 16b~25:~} 

100}) = 2[Z(se  + 5e ) + 

+ 42,.9°~ z 
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= - + by,I} d~01[2b (Sex + 5e,) (INi{201 }) 4Y{Se21 2 2 2 2 2 2 

(INi{001 }) : 4~(5e~ + 6"2) 
= summation over Nil and Ni2. 
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A basic equation of dynamical diffraction for an imperfect crystal is derived based on a general dynami- 
cal theory of diffraction. This equation is given in the form of a differential equation, and therefore can 
be considered to describe the diffraction processes locally inside a crystal. A phenomenological inter- 
pretation of this equation helps to fill in the gap between modern quantum mechanical treatments and 
ordinary treatments by dynamical theory of diffraction for a perfect crystal. In the approximation of 
poor resolution the more exact equation reduces to Takagi's equation. A necessary condition which 
makes Takagi's equation valid leads to the concept of local reciprocal lattice vectors. 

1. Introduction 

A general dynamical theory of diffraction for an imper- 
fect crystal has been formulated previously by use of 
a quantum field theoretical technique* (Ashkin & Ku- 
riyama, 1966; Kuriyama, 1967a,b, 1968). The validity of 
this theory is not restricted by the magnitudes of 
strains (atomic displacements), and types of imperfec- 
tions, nor by the state of the incident beam. This 
theory is constructed from an atomistic point of view: 
the generalized polarizability for X-rays or the gene- 
ralized crystal potential for incoming electrons does 
not possess periodic translational invariance in imper- 
fect crystals. 

Much of the physics involved in diffraction from im- 
perfect crystals has been discussed in a previous paper 
(Kuriyama, 1969) where a standard iteration technique 
is applied to this new formulation; the effects of crystal 
imperfections on dynamical diffraction have been 
treated correctly by properly accounting for the phase 
modulation of the diffracted beams, and not as a 
result of the assumption of modified Bloch waves. 

Using this new formulation, a dynamical expression for 
the scattering amplitude of an imperfect crystal has 
been derived in a compact form (Kuriyama, 1970; here- 
after this paper will be referred to as I). 

On the other hand there have appeared a number of 
works on the dynamical theory of diffraction in im- 
perfect crystals (Penning & Polder, 1961, 1964; Kato, 
1963a,b,c, 1964a,b; Bonse, 1964; Kambe, 1965; Wil- 
kens, 1966; Takagi, 1962, 1969; Balibar & Authier, 
1967; Taupin, 1964; Chukhovskii & Shtolberg, 1970; 
Afanas'ev & Kohn, 1971; Howie & Whelan, 1961; 
Dederichs, 1966, 1967; and probably others). All but 
Dederich's work appear to be phenomcnological ex- 
tensions of classical (Ewald-Laue-Bethe) perfect crys- 
tal theory to imperfect crystals and, hence, only find 
applications in those cases in which distortions are 
small. 

Recent developments using such a phenomenologi- 
cal approach have led to equations such as Takagi's 
(1962, 1969). In this paper, therefore, the aim is to study 
the relation between Takagi's equation and the more 
exact dynamical equation. 

* The dynamical theory of diffraction has also been for- 
mulated for a perfect crystal, using quantum field theoretical 
techniques, by Ohtsuki & Yanagawa (1966) and Hannon& 
Trammell (1968, 1969). 

2. Dynamical scattering amplitude 

The scattering amplitude for an X-ray beam striking a 
crystal at position R with initial momentum k and 


